Modelització dels aspectes sanitaris i anàlisi del cicle de vida de la recàrrega de l’aqüífer del Port de la Selva

Dr. Ulf Miehe, Wolfgang Seis, Dr. Christoph Sprenger, Fabian Kraus
Topics for today

1. Microbial risk assessment
2. Presence of pharmaceutical residues
3. Life cycle assessment
Microbial risk assessment (World health organization approach)

- Safe vs. unsafe? → No!
- They’re is more than black/white or yes/no.
- Our approach:
 - We work with a lot with worst case assumptions.
 - Use probabilities (How sure are you?)
 - How sure are we, that the inhabitants of El Port are not harmed by microbial contamination?
 - WHO definition of “not harmed”:
 - Additional microbial risk: < 1 µDALY (e.g. less than 1 virus/100,000 L present in water)
Microbial risk assessment
(World health organization approach)

- **Direct pathogen measurements** (Salmonella, Giardia)
- **Indicator to pathogen ratio** (Norovirus, Rotavirus, Campylobacter)
- **Epidemiological data**
- **Pathogen concentration in influent**
- **Pathogen concentration in effluent**
- **Pathogen concentration after subsurface passage**
- **Pathogen concentration after chlorination**

Reduction in STP (sec. + Filtr. + UV), technical barrier

Reduction during MAR (natural barrier)

Reduction DW production (chlorination)

Exposure scenarios (number of exposure event, ingested volume)

Probability of infection

Probability of disease

Risk of disease

Severity factor for DALY calculation

Disease per infection ratio

Dose-response model

Probability of infection

Probability of disease

Risk of disease
Overview reuse scheme

Assumptions for raw sewage:
- Campylobacter: 1.000.000/L
- Rotavirus 31.000/L
- Cryptosporidium 10.000/L

What is log-reduction?

<table>
<thead>
<tr>
<th>Log</th>
<th>Removal</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>90 %</td>
<td>100.000 /L</td>
</tr>
<tr>
<td>2</td>
<td>99 %</td>
<td>10.000 /L</td>
</tr>
<tr>
<td>3</td>
<td>99.9 %</td>
<td>1.000 /L</td>
</tr>
<tr>
<td>4</td>
<td>99.99 %</td>
<td>100 /L</td>
</tr>
<tr>
<td>5</td>
<td>99:999 %</td>
<td>10 /L</td>
</tr>
<tr>
<td>6</td>
<td>99.9999 %</td>
<td>1 /L</td>
</tr>
<tr>
<td>7</td>
<td>99.99999 %</td>
<td>0.1 /L</td>
</tr>
<tr>
<td>8</td>
<td>99.999999 %</td>
<td>0.01 /L</td>
</tr>
<tr>
<td>9</td>
<td>99.9999999 %</td>
<td>0.001 /L</td>
</tr>
<tr>
<td>10</td>
<td>99.99999999 %</td>
<td>0.0001 /L</td>
</tr>
</tbody>
</table>

Required reduction compared to raw sewage to reach 1 µDALY (log reduction):

- Campylobacter: 6.12
- Rotavirus 5.6
- Cryptosporidium 3.34
Microbiology data from El Port reuse site

- Royal degree for reuse fulfilled (infiltration)
- Good removal of bacteria during subsurface passage
- Little removal of bacteriophages in groundwater after short residence time (in line with literature → need longer time)

TT = mean travel time of infiltrate from pond to observation well
4/6 = four positive out of six samples
Example of performance assessment (Filter + UV disinfection)

Sampling campaigns in spring 2016

Performance and uncertainty assessment (example for bacteria reduction)

- Virtually certain > 99%
- Very likely > 90%

Required additional reduction after UV disinfection

<table>
<thead>
<tr>
<th>Reference pathogens for bacteria, viruses and parasites</th>
<th>Indirect potable reuse</th>
<th>Urban irrigation</th>
<th>Private irrigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campylobacter</td>
<td>4.88</td>
<td>1.9</td>
<td>0.3 - 1.27</td>
</tr>
<tr>
<td>Rotavirus</td>
<td>3.65</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Cryptosporidium</td>
<td>3.3</td>
<td>- 0.7</td>
<td>- 0.4</td>
</tr>
</tbody>
</table>

- Virtually certain that log reduction for bacteria is > 2 log units for bacteria
- High confidence (79 - 98%) that reduction of bacteria by UV disinfection at least 2.6 log
 Uncertainty result of number of samples (n = 36). Reduction by taking more samples recommended.
- Reduction of parasites and viruses by 2.7 log and 3 log respectively

Physical disinfection
Reduction during subsurface passage (indirect potable reuse)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Distribution</th>
<th>Log Reduction</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traveltime</td>
<td>Range</td>
<td>N (μ = 500, sd = 100)</td>
<td>Model Amphos 21</td>
</tr>
<tr>
<td>Reduction during infiltration Campylobacter</td>
<td>Range</td>
<td>2 – 6
 Used value 2</td>
<td>WHO Guidelines for Drinking Water Quality</td>
</tr>
<tr>
<td>Reduction during subsurface passage Campylobacter</td>
<td>T90
 3d - 7d</td>
<td>> 20
 Used value 20</td>
<td>Sidhu et al. 2015, from diffusion chamber experiments of 4 different MAR sites</td>
</tr>
<tr>
<td>Reduction during infiltration Cryptosporidium</td>
<td>Range</td>
<td>0.5 - 5
 Used value 0.5</td>
<td>WHO Guidelines for Drinking Water Quality</td>
</tr>
<tr>
<td>Reduction during subsurface passage Cryptosporidium</td>
<td>T90
 56-120d</td>
<td>4.2 - 8.9
 Used value 4.2</td>
<td>Sidhu et al. 2015 from diffusion chamber experiments of 4 different MAR sites</td>
</tr>
<tr>
<td>Reduction during infiltration Rotavirus</td>
<td>Range</td>
<td>0.25 - 4
 Used value 0.25</td>
<td>WHO Guidelines for Drinking Water Quality</td>
</tr>
<tr>
<td>Reduction during subsurface passage Rotavirus</td>
<td>T90 = random
 (min = 30, max = 100)</td>
<td>> 5 log</td>
<td>Australian Guidelines for Water recycling</td>
</tr>
<tr>
<td>Reduction chlorination (drinking water treatment)</td>
<td>Point estimate</td>
<td>2 log viruses 2 log bacteria 0.5 log protozoa</td>
<td>WHO Guidelines for Drinking Water Quality</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference pathogens</th>
<th>WWTP, UV, MAR, CI</th>
<th>WWTP, MAR, UV (failure of CI at DWTP)</th>
<th>WWTP, MAR, CI (failure of Filter + UV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campylobacter</td>
<td>-19.12</td>
<td>-17.12</td>
<td>-16.52</td>
</tr>
<tr>
<td>Rotavirus</td>
<td>- 3.55</td>
<td>- 1.55</td>
<td>0.2</td>
</tr>
<tr>
<td>Cryptosporidium</td>
<td>- 2</td>
<td>- 1.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Conclusions Microbial Risk Assessment

• The required log reduction for bacteria, virus and parasites can be achieved for all three reuse options:
 – In line with WHO target of 1µDALY
 – Even with worst case assumptions (high initial concentration + low performance of treatment steps) → real risk will be most likely much lower
 – But: All treatment steps need to be in operation!

• Most critical treatment step is the filter + UV disinfection:
 – If UV disinfection fails, the reuse of water has to be stopped (for both irrigation and infiltration)
 – In 2013-2014 in some cases very low disinfection performance (UV lamps replaced in 2014) → room for improvement
Estimation on trace organic transfer from secondary effluent via MAR to drinking water well

<table>
<thead>
<tr>
<th>Trace organics</th>
<th>Secondary Effluent (µg/L)</th>
<th>Estimate drinking water (µg/L)</th>
<th>Health orientated guideline value in Germany (µg/L) **</th>
<th>Prediction with activated carbon treatment (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbamazepine</td>
<td>0.2</td>
<td>0.005 - 0.08 (Median 0.04)</td>
<td>0.3</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Gabapentine*</td>
<td>1.6</td>
<td>0.17-0.63 (Median 0.36)</td>
<td>1.0</td>
<td>0.08-0.35 (Median < 0.2)</td>
</tr>
<tr>
<td>Sulfamethoxazole</td>
<td>0.84</td>
<td>±0.050</td>
<td>0.1</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Diuron</td>
<td>2.3</td>
<td>0 – 0.002 (Median: 0.001)</td>
<td>0.1</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Terbutryne</td>
<td>0.15</td>
<td>0-0.0008 (Median: 0.0005)</td>
<td>0.1 (legal limit)</td>
<td>< 0.00005</td>
</tr>
</tbody>
</table>

*assumption: no degradation in MAR (worst case assumption) → degradable, but no degradation coefficient known yet

**Health orientated guideline value: considered to be safe for 70 a of consumption by German EPA

GAC with max. 5000 BV
Conclusion on trace organic contaminants

- Various trace organic contaminants present in WWTP effluent
- Without additional treatment step:
 - Transfer of pesticides unlikely
 - Transfer of pharmaceutical residues very likely, but still below health orientated guideline values from German EPA
- Planning for full-scale activated carbon filter ongoing (pilot test this summer, lab test for GAC selection performed by KWB)
- With additional treatment step (Prediction based on piloting in Berlin):
 - Additional safety barrier against pesticides
 - Transfer of pharmaceutical strongly reduced (Carbamazepine, Sulfamethozazol), most difficult compound to be removed is Gabapentine
Comparison of treatment option
El Port de la Selva

Fabian Kraus, 05/2016
Methodology of LCA

- **LCA** is a standardized holistic tool to assess direct and indirect effects.
- **LCA** considers chemical & electricity production, infrastructure...
- **Balancing** ecological benefits vs. ecological burdens.
 - e.g. reduction of water scarcity vs. increased energy consumption.

Emissions in air, water, soil

System boundaries

- **Climate change**
- **Acidification**
- **Eutrophication**
- **Human & Ecotoxicity**

Electricity, Chemicals

Waste disposal

Product system
 - e.g. tertiary treatment

Resources (fossil fuels, ores, land use)

Co-Products
 - (electricity, nutrients...)

Cum. Energy Demand
 - Abiotic resource depletion
 - Land use
Scope of LCA for El Port de la Selva:

„Analysis of the alternatives to increase the availability of water resources in El Port de la Selva by 100 Mio liters/year”
0. **status** until 2015
 - WWTP effluent discharge to sea, drinking water from groundwater

1. **reuse A** with filter, GAC, UV (and Cl) in tertiary treatment
 - partial WWTP effluent irrigation to private gardens (summer)
 - partial WWTP effluent infiltration into aquifer (winter)

2. **reuse B** with UF, RO (and Cl) in tertiary treatment
 - partial WWTP effluent irrigation to gardens (summer)
 - partial WWTP effluent infiltration into aquifer (winter)

3. **network connection**
 - Pumping water from Empuriabrava

4. **seawater desalination**
global warming potential

Total Spain: approx. 8000 kg CO₂-Eq/(pe*a)

Total EU-27: approx. 11000 kg CO₂-Eq/(pe*a)

Data-Set and total value from 2008
global warming potential and ionising-radiation of Reuse A for different electricity mixes of...

Data-Set and total value from 2008
Conclusion life cycle assessment

- All measures to increase water availability are associated with additional energy consumption and greenhouse gas emissions (only other solution: reduce water consumption)
- Ranking of GHG emissions:
 - Seawater desalination >> wastewater desalination/pipeline from Empuriabrava/ infiltration
 - High exchange rate of activated carbon makes wastewater desalination an potential alternative to current scheme
- A high share of renewable energy in the national energy mix reduces the GHG emissions
- Options to reduce GHG emissions:
 - Direct pipeline from WWTP to infiltration pond
 - Replacement of pressurized filtration by gravity sand filter (reduction of energy demand)
The European Union is acknowledged for co-funding DEMOWARE within the 7th Framework Programme under grant agreement n° 619040